DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to construct, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled variations of the models as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that utilizes support learning to enhance reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. An essential identifying function is its reinforcement knowing (RL) step, which was utilized to improve the design's responses beyond the standard pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adjust better to user feedback and goals, ultimately improving both importance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) method, implying it's geared up to break down complicated inquiries and reason through them in a detailed way. This assisted thinking process allows the design to produce more precise, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT abilities, aiming to create structured reactions while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has recorded the market's attention as a flexible text-generation model that can be integrated into different workflows such as representatives, rational thinking and information analysis tasks.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion criteria, enabling efficient reasoning by routing queries to the most pertinent expert "clusters." This method enables the model to concentrate on different problem domains while maintaining overall efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more efficient designs to mimic the behavior and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as a teacher model.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this model with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid hazardous content, and assess designs against essential safety criteria. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop multiple guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing security controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limit increase, produce a limitation increase request and reach out to your account group.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For guidelines, see Set up authorizations to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to present safeguards, prevent hazardous content, and evaluate designs against crucial safety criteria. You can execute security procedures for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to examine user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The general circulation involves the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane.
At the time of writing this post, you can utilize the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a supplier and choose the DeepSeek-R1 model.
The model detail page supplies essential details about the design's abilities, pricing structure, and execution standards. You can discover detailed use instructions, consisting of sample API calls and code bits for combination. The model supports different text generation tasks, including content production, code generation, and concern answering, utilizing its support learning optimization and CoT reasoning abilities.
The page also includes implementation options and licensing details to assist you begin with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, pick Deploy.
You will be triggered to set up the implementation details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of circumstances, go into a number of circumstances (between 1-100).
6. For example type, choose your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested.
Optionally, you can configure advanced security and facilities settings, consisting of virtual private cloud (VPC) networking, service role permissions, and encryption settings. For most use cases, the default settings will work well. However, for production releases, you may want to examine these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin utilizing the model.
When the implementation is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground.
8. Choose Open in play area to access an interactive user interface where you can explore different triggers and change model parameters like temperature and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal outcomes. For example, material for inference.
This is an excellent method to explore the model's thinking and text generation capabilities before integrating it into your applications. The playground provides instant feedback, assisting you comprehend how the model reacts to various inputs and letting you fine-tune your prompts for optimum results.
You can quickly test the design in the play area through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference using guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to perform reasoning using a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up reasoning criteria, and sends out a request to produce text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 practical techniques: using the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you select the technique that finest matches your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, pick Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The model internet browser shows available models, with details like the service provider name and design abilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each model card reveals essential details, consisting of:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if relevant), indicating that this model can be signed up with Amazon Bedrock, enabling you to use APIs to invoke the design
5. Choose the model card to see the model details page.
The model details page includes the following details:
- The design name and service provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details
The About tab includes crucial details, such as:
- Model description. - License details.
- Technical requirements.
- Usage standards
Before you release the model, it's recommended to examine the model details and license terms to confirm compatibility with your use case.
6. Choose Deploy to continue with implementation.
7. For Endpoint name, utilize the immediately produced name or produce a custom one.
- For Instance type ¸ choose an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the number of instances (default: 1). Selecting proper instance types and counts is crucial for expense and efficiency optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
- Review all setups for accuracy. For this model, we strongly suggest sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to release the design.
The deployment process can take a number of minutes to finish.
When deployment is total, your endpoint status will change to InService. At this point, the model is prepared to accept inference requests through the endpoint. You can keep track of the deployment development on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the deployment is complete, you can invoke the model utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the essential AWS consents and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for deploying the design is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:
Tidy up
To prevent unwanted charges, complete the steps in this area to clean up your resources.
Delete the Amazon Bedrock Marketplace release
If you deployed the design using Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace deployments. - In the Managed deployments area, find the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're erasing the proper release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for surgiteams.com Inference at AWS. He assists emerging generative AI business build innovative solutions using AWS services and sped up calculate. Currently, he is focused on developing techniques for fine-tuning and enhancing the inference performance of large language designs. In his totally free time, Vivek takes pleasure in treking, viewing movies, and trying various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about constructing services that help customers accelerate their AI journey and unlock company worth.